An intuitive tour of parabolic reflector antennas

By K6MG

Introduction

Goal: directivity

Spherical wavefront
Planar wavefront

Wavefront: constant phase across the surface
\longrightarrow Propagation through space and time

Conversion from spherical to planar wavefronts

Constant distance from the focus to the plane at all angles

- Diameter 4 units
- Focal length 1 unit
- F/D 0.25
- Were only interested in

Canonical full parabola

 parabolas with F/D > 0.25 since smaller F/D becomes too deep- Any parabola of interest can be made from this
curve by truncating the diameter to get the desired F / D and scaling the units to the desired size

Things to notice

- Truncating the diameter for higher F/D results in a "shallower" curve: the focus stays at the same place but the parabola edges pull back toward zero
- At $0.25 \mathrm{~F} / \mathrm{D}$ the edges are in the same plane as the focus
- The angle of incidence == the angle of reflection, at 0 degrees the surface of the parabola is perpendicular to the wavefront, at 90 degrees the surface of the parabola is 45 degrees to the wavefront

Uses at most half of the parabolic curve

The "offset" can be >0 by starting the curve >0

The focal length is defined as the distance from the lower edge of

The offset parabola

 the curve to the focal pointThe tilt angle is the angle from vertical of the plane across the edges

The "diameter" is
defined as the aperture of the incoming/outgoing planar wavefront

Things to notice

The tilt angle is a function of F / D for any given offset, only one tilt angle is possible for an F/D

Offsets >0 require a larger segment of the curve to achieve the same aperture

A zero offset parabola has exactly double the F/D of the equivalent full parabola, the focal length is the same as the full parabola

Tilt Angle	F/D
14.5	1
15.25	0.95
16	0.9
17	0.85
18	0.8
19.25	0.75
20.8	0.7
22.6	0.65
24.5	0.6
27	0.55
30	0.5

Inefficiencies

Illumination -

 nonconstant energy across the dish surfaceBlockage - feed and supports block part of the aperture

Spillover - feed
energy spills over the edge of the dish

Ohmic - reflective surface is not a perfect conductor

Surface - surface shape deviates from a perfect parabola

Diffraction - feed, supports and dish edges diffract some of the energy

Inefficiency	Prime focus	Offset
Illumination	0.88	0.88
Spillover	0.88	0.88
Blockage	0.90	0.97
Ohmic	0.99	0.99
Surface	0.97	0.97
Diffraction	0.95	0.98
Feedline	0.90	0.98
	57%	69%
	-2.4 db	-1.6 db

- Spillover loss

Illumination and Spillover

Illumination loss
Spillover loss

Illumination and Spillover

Newtonian - flat sub-reflector

Multiple Reflectors

Cassegrain - hyperbolic sub-reflector

Gregorian - elliptical sub-reflector

- + Reduce feedline loss by moving the FP back toward the dish

Why??

- + Cassegrain and Gregorian multiply the F/D improving illumination efficiency of low F/D dishes
- - for small dishes blockage increases significantly
- - double diffraction, spillover and ohmic losses
$18^{\prime \prime}$ diameter main $2.75^{\prime \prime}$ diameter sub 2.5% sub blockage 40 GHz min

10 GHz min
10" diameter sub
31% sub blockage

Example Cassegrains

36 " diameter main 4 " diameter sub
1.4\% sub blockage

24 GHz min

Axially Displaced Ellipse (Gregorian)

Step 1: displace the parabola from the origin opening up a hole in the center

This creates a circular ring of focus rather than a point focus

In the example the parabola is displaced 0.5 from the origin

ADE

Step 2: use a rotated tilted ellipse to convert the focus ring to a focus point

Note that at the focus ring the wavefronts to the inner and outer edges of the displaced parabola cross

The crossing distributes the highest energy density of the feed to the outer edges of the parabola

Inefficiencies ADE vs. Offset

Inefficiency	ADE	Offset
Illumination	0.96	0.88
Spillover	0.96	0.88
Blockage	0.96	0.97
Ohmic	0.99	0.99
Surface	0.97	0.97
Diffraction	0.98	0.98
Feedline	0.98	0.98
	82%	69%
	-0.9 db	-1.6 db

> Don't have to use conic sections (Parabola,ellipse,hyperbolic) as long as the ray traced distance from the feedpoint to the planar wave is constant

Shaped multiple reflectors

Shaping the sub-reflector and the main reflector enables better energy distribution to be achieved like the ADE

Efficiencies of up to 85% have been measured

Don't have to make all the path lengths equal!!!

It's the constant phase at the plane that ensures directivity

Reflectarray

Equal path lengths produce an in-phase wavefront at all frequencies

If we can operate narrow band other reflector structures become possible

For instance: a planar array of dipole reflectors that use passive or active phase tuning to produce an in-phase reflected wavefront

A Fresnel dielectric plate in front of a flat reflector can be used to generate the phase shifts needed to result in a planar wavefront

Fresnel reflector

The dielectric thickness is kept low in order to minimize absorption loss

Efficiencies of $<=30 \%$ are typical for this type of structure

Conclusions

- There are a wide range of parabolic type reflector antennas with various tradeoffs:

Efficiency
Ease of construction

- Efficiencies higher than a good offset parabola while possible are less than 1 db

