LOW-PROFILE PLANAR PATCH ANTENNA ARRAY For 10 GHz with Gain > +30 dBi

To: "50 MHz & UP" CLUB, North California

From: MIROSLAV PAJOVIC (WA6MP) Sr. Antenna Design Engineer "MP Antennas and Arrays R&D"

About the author

- Received Graduate Diploma Degree in Electrical Engineering from University of Belgrade, Serbia; and the evaluation to MSEE in USA, 1994.
- Professionally active in Silicon Valley for 20+ years. Used to work for Sanmina and Nortel Networks Corps. as Sr. EMI/RF Engineer; for Cisco Systems as a Technical EMI Leader; and for Enegrous Corp. as Sr. Principal Antenna Engineer.
- Currently Antenna Design and EMI Consulting Engineer.

Some IEEE Publications and USA Patents in R&D

- IEEE Conference paper: "Dual-band metamaterial-structured antenna with coplanar waveguide and radial feed stub", M. Pajovic with team, et al., *IEEE Symposium on Antennas and Propagation*, *Vancouver, Canada, 2015*
- Common-Mode Filter for 10-Gb/s Differential Microstrip Lines, M. Pajovic with team, USA patent 8,907,748 B2, 2014.
- IEEE Conference paper: "The Gigahertz common-mode filter for differential signal lines",
- M. Pajovic with team, et al., IEEE EMC Symposium, Denver, Colorado, 2013, and
- "Improved Common-Mode Filter for 10-Gb/s Straplines", M. Pajovic with team, USA *Patent pending.*
- "Gigahertz-range Analysis of Impedance Profiles and Cavity Resonances in Multilayered planar structures", M. Pajovic with team, et al., *IEEE Transactions on Electromagnetic Compatibility*, 2010.
- "The Closed-form Equation for Estimating Capacitance of Signal Vias in Arbitrarily Multilayered PCBs", M. Pajovic with team, *IEEE Transactions on Electromagnetic Compatibility*, *2008.*

HAM Radio Life

- Received the first Ham Radio license in 1967, former Yugoslavia, in a high school (50 years ago!) Later, got a personal call sign YU1WK.
- Used to be a long time member of Academic HAM Radio Club YU1EXY from Belgrade University (well known European Club on Ham-radio bands and in worldwide contests)
- Currently (over a decade) the call sign is WA6MP (extra FCC class)

LOW-PROFILE PANEL PATCH ANTENNA ARRAY For 10 GHz with Gain > +30 dBi

Design concept and HFSS simulation results

16x16 Patch array (256 patches), (16x16) inch

کے

Top view

_	-															
7	Ð			۲		۲	۲	8	۲			Ð		8	•	
•	₽		₽			Ð	•	₽	₽		₽	₽		₽	₽	
8	Ð	Ð		Ð	Ð	Ð	۲	B	Ð	Ð		Ð	Ð	8	Ð	
-	•	۲		8	۲	Ð	٥	8	8	۲	8	8		8	8	
•	Ð	Ð	Ð	Ð	Ð	Ó	Ð	8	Ð	Ð	B	Ð	Ð	B	₽	
8	Ð	Ð		Ð	Ð	Ð	Ð	₽	Ð	Ð	8	Ð	Ð	8	ġ	
•	₽	Ð	8	₽	Ð	ė	₽	₽	₽	Ð	8	₽	Ð	8	U)	
	Ð	₽		₽	₽	Ð	₽	₽	Ð	₽	B ,	Ð	₽	8	Ð	
	Ð	5		5	5	Ð	۲	₽	Ð	•		Ð	Ð	8	Ð	
•	₽	Ð	8	Ð	Ð	È	Ð	₽	₽	Ð	₽	₽	Ð	8	₽	
	Ð	₽		₽	₽	₽	۲	₽	Ð	•		Ð	₽	8	Ð	
•	•			₽			Ð	₽			₽			8	8	
	Ð	Ð	8	Ð	Ð	Ð	Ð	₽	Ð	Ð	8	Ð	Ð	8	₽	
8	Ð	Ð	₽	Ð	Ð	Ð		₽	Ð		8	Ð	Ð	8	Ð	
	Ð		8	₽			8	₽	₽		8	8	₽	8		
ŧ	Ð	Ð		Ð	Ð	Ð	8	8	Ð			Ð	Ð	8	Ð	

Stackup for 16x16 patch Array

Array PCB> 1st layer; 16x16 patches, Cu Dielectric Ro3035, thick 60 mil 2nd layer; GND plane, Cu Feed PCB> 1st layer; GND plane Dielectric Ro3035, thick 60 mil 2nd layer; feed network, Cu Air; thick 10mm Electronic PCB> 1st layer; GND plane, Cu Dielectrics (?) Electronic components layer

- Ro3035 or Ro3003 are commercially graded materials (DK=3.6 or 3.0; TD=0.0015 or 0.001)
- May be used one panel for two PCBs
- The Array assembling is putting together the two PCBs (face-to-face ground planes)

The array element: a wideband patch above GND plane with embedded slots

Patch Stackup and dielectric material

1st layer: Patch
RO3035, thick 60-mil
2nd layer: solid GND
RO3035, thick 60-mil
3rd layer: Microstrip feed

S11=-31 dB @10.3 GHz

Rad. Pattern with max. Realized Gain=+6.2 dBi in E- and H-plane

3-D Rad. Pattern of the patch; Realized G=6.2dBi

dB(RealizedGain						
	6.2493e+000					
	5.4982e+000					
	4.7471e+000					
	3.9959e+000					
	3.2448e+000					
	2.4937e+000					
	1.7426e+000					
	9.9144e-001					
	2.4031e-001					
	-5.1082e-001					
	−1.2619e+000					
	-2.0131e+000					
	-2.7642e+000					
	-3.5153e+000					
	-4.2664e+000					
	-5.0176e+000					
	-5.7687e+000					

Feed and Impedance Matching for 1 patch

The patch impedance transform from 50 to 100 Ohm by 1⁄4 lambda microstrip transformer

2x2 Patch array with a corporate (parallel) feed network and 50-to-100-Ohm transforms

2x2 Patch: S11=-22 dB @ 10.3 GHz at Array input

2x2 Patch; Rad. Pattern with realized G=+12.3 dBi in E and H plane

The corporate network for the 16x16 Array

Gain calculation for existing and operating a **8x8 dipole** array

The example of 8x8 Dipole Array above a solid ground plane:

$$f_{c} := 10.3 \cdot 10^{9} \qquad \lambda_{0} := \frac{3 \cdot 10^{8}}{f_{c}} \qquad \lambda_{0} = 29 \text{ mm}$$

$$N_{x} := 8 \qquad N_{y} := 8 \qquad d := 0.9 \cdot \lambda_{0} \qquad G_{el} := 2.14 + 3 \qquad dBi$$

$$G_{array} := G_{el} + 10 \cdot \log \left(2 \cdot N_{x} \cdot N_{y} \cdot \frac{d}{\lambda_{0}} \right)$$

 $G_{array} = 25.75 dBi$

(The declaring max. gain of an operating 8x8 dipole array is 25 dBi)

Estimated Array Gain calculation for the current **16x16 patch** array

$$f_c := 10.3 \cdot 10^9$$
 $\lambda_0 := \frac{3 \cdot 10^8}{f_c}$ $\lambda_0 = 29 \text{mm}$

 $N_x := 16$ $N_y := 16$ $d := 0.9 \cdot \lambda_0$ $G_{el} := 6.2$ dBi

$$G_{array} := G_{el} + 10 \cdot \log \left(2 \cdot N_x \cdot N_y \cdot \frac{d}{\lambda_0} \right)$$

G_{array} = 32.8 dBi

Business card

575 E. Remington Dr, 23-J Sunnyvale, CA 94087 USA

pajovic.miroslav@gmail.com

1 (408) 685 2023

Miroslav Pajovic RF/Antennas and EMC Consulting